
4

Basic techniques

The goal of ontology matching is to find the relations between entities expressed
in different ontologies. Very often, these relations are equivalence relations that are
discovered through the measure of the similarity between the entities of ontologies.

We present here some of the basic methods for assessing the similarity or the
relations between ontology entities. By basic, we mean that these methods base their
judgment on one particular kind of features of these entities. Chap. 5, in turn, shows
how the results of these methods can be combined.

In this chapter, we first introduce basic concepts related to similarity (§4.1). Then,
we consider basic methods following the ‘kind of input’ layer of the classification of
Chap. 3: entity names (§4.2), structure (§4.3), extension (§4.4) and semantics (§4.5).

4.1 Similarity, distances and other measures

There are many ways to assess the similarity between two entities. The most common
way amounts to defining a measure of this similarity. We present some characteristics
of these measures.

Definition 4.1 (Similarity). A similarity σ : o × o → R is a function from a pair of
entities to a real number expressing the similarity between two objects such that:

∀x, y ∈ o, σ(x, y) ≥ 0 (positiveness)

∀x ∈ o,∀y, z ∈ o, σ(x, x) ≥ σ(y, z) (maximality)

∀x, y ∈ o, σ(x, y) = σ(y, x) (symmetry)

The dissimilarity is a dual operation. It is defined as follows.

Definition 4.2 (Dissimilarity). Given a set o of entities, a dissimilarity δ : o×o→ R

is a function from a pair of entities to a real number such that:

74 4 Basic techniques

∀x, y ∈ o, δ(x, y) ≥ 0 (positiveness)

∀x ∈ o, δ(x, x) = 0 (minimality)

∀x, y ∈ o, δ(x, y) = δ(y, x) (symmetry)

Some authors consider a ‘non symmetric (dis)similarity’, [Tverski, 1977]; we
then use the term non symmetric measure or pre-similarity. There are more con-
straining notions of dissimilarity, such as distances and ultrametrics.

Definition 4.3 (Distance). A distance (or metric) δ : o × o → R is a dissimilarity
function satisfying the definiteness and triangular inequality:

∀x, y ∈ o, δ(x, y) = 0 if and only if x = y (definiteness)

∀x, y, z ∈ o, δ(x, y) + δ(y, z) ≥ δ(x, z) (triangular inequality)

Definition 4.4 (Ultrametric). Given a set o of entities, an ultrametric is a metric
such that:

∀x, y, z ∈ o, δ(x, y) ≤ max(δ(x, z), δ(y, z)) (ultrametric inequality)

Very often, the measures are normalised, especially if the similarity of differ-
ent kinds of entities must be compared. Reducing each value to the same scale in
proportion to the size of the considered space is the common way to normalise.

Definition 4.5 (Normalised (dis)similarity). A (dis)similarity is said to be nor-
malised if it ranges over the unit interval of real numbers [0 1]. A normalised version
of a (dis)similarity σ (respectively, δ) is denoted as σ (respectively, δ).

It is easy to see that to any normalised similarity σ corresponds a normalised
dissimilarity δ = 1 − σ and vice versa. In the remainder, we will consider mostly
normalised measures and assume that a dissimilarity function between two entities
returns a real number between 0. and 1.

From the above definitions, the similarity and dissimilarity are complete func-
tions that map pairs of entities to real numbers. An alternative representation for
such a function on a finite set of entities is a matrix (see Example 4.14). The ma-
trix has the advantage of being a finite data structure that can be exchanged between
programs.

4.2 Name-based techniques

Some terminological methods compare strings. They can be applied to the name, the
label or the comments of entities in order to find those which are similar. This can be
used for comparing class names and/or URIs.

Throughout this section, the set S will represent the set of strings, i.e., the se-
quences of letters of any length over an alphabet L: S = L∗. The empty string is

4.2 Name-based techniques 75

denoted as ε, and ∀s, t ∈ S, s + t is the concatenation of the strings s and t. |s|
denotes the length of the string s, i.e., the numbers of characters it contains. s[i] for
i ∈ [1 |s|] stands for the letter in position i of s.

Example 4.6 (Strings). The string ‘article’ is made of the letters a, r, t, i, c, l and e.
Its length is 7 characters. ‘peer-reviewed’ and ‘ ’ are two other strings (so ‘-’ and
‘ ’ are letters in the alphabet) and their concatenation ‘peer-reviewed’+‘ ’+‘article’
provides the string ‘peer-reviewed article’ whose length is 21.

A string s is the substring of another string t, if there exist two strings s′ and s′′,
such that s′ + s + s′′ = t (denoted as s ∈ t). Two strings are equal (s = t) if and
only if s ∈ t and t ∈ s. The number of occurrences of s in t (denoted as s#t) is the
number of distinct pairs s′, s′′, such that s′ + s + s′′ = t.

Example 4.7 (Substrings). The string ‘peer-reviewed article’ has the string ‘review’
as a substring because ‘peer-’+‘review’+‘ed article’=‘peer-reviewed article’. The
string ‘homonymous’ has three occurences of the string ‘o’, two occurences of the
string ‘mo’ and only one occurence of the string ‘nym’.

The main problem in comparing ontology entities on the basis of their labels
occurs due to the existence of synonyms and homonyms:

Synonyms are different words used to name the same entity. For instance, Article
and Paper are synonyms in some contexts;

Homonyms are words used to name different entities. For instance, peer as a noun
has a sense ‘equal’ as well as another sense ‘member of the nobility’. The fact
that a word can have multiple senses is also known as polysemy.

Consequently, it is not possible to deduce with certainty that two entities are
the same if they have the same name or that they are different because they have
different names. There are more reasons than synonymy and homonymy why this
could happen. In particular:

– Words from different languages, such as English, French, Italian, Spanish, Ger-
man, Greek, are used to name the same entities. For instance, the word Book in
English is Livre in French and kniga in Russian.

– Syntactic variations of the same word often occur according to different accept-
able spellings, abbreviations, use of optional prefixes or suffixes, etc. For in-
stance, Compact disc, CD, C.D. and CD-ROM can be considered equivalent in
some contexts. However, in some other contexts, CD may mean Corps diploma-
tique and in some others change directory.

These kinds of variations can occur within one ontology but can be even more
frequent across ontologies. However, the way in which things are named remains
very important in every day communication and names remain a good index of sim-
ilarity or dissimilarity. Moreover, many different techniques have been designed for
assessing the similarity of two terms notwithstanding the similarity or dissimilarity
of the strings which denote them.

76 4 Basic techniques

There are two main categories of methods for comparing terms depending on
their consideration of character strings only (§4.2.1) or using some linguistic knowl-
edge to interpret these strings (§4.2.2).

4.2.1 String-based methods

String-based methods take advantage of the structure of the string (as a sequence
of letters). String-based methods will typically find classes Book and Textbook to be
similar, but not classes Book and Volume.

There are many ways to compare strings depending on the way the string is
viewed: for example, as an exact sequence of letters, an erroneous sequence of let-
ters, a set of letters, a set of words. [Cohen et al., 2003b] compares various string-
matching techniques, from distance like functions to token-based distance functions.
We discuss the most frequently used methods.

We distinguish between (i) normalisation techniques which are used for reducing
strings to be compared to a common format, (ii) substring or subsequence techniques
that base similarity on the common letters between strings, (iii) edit distances that
further evaluate how one string can be an erroneous version of another, (iv) statistical
measures that establish the importance of a word in a string by weighting the relation
between two strings and (v) path comparisons.

Normalisation

Before comparing actual strings which have a meaning in natural language, there are
normalisation procedures that can help improve the results of subsequent compar-
isons. In particular:

Case normalisation consists of converting each alphabetic character in the strings
into their lower case counterpart. For example, CD becomes cd and SciFi be-
comes scifi.

Diacritics suppression consists of replacing characters with diacritic signs with
their most frequent replacements. For example, replacing Montréal with Mon-
treal.

Blank normalisation consists of normalising all blank characters, such as blank,
tabulation, carriage return, or sequences of these, into a single blank character.

Link stripping consists of normalising some links between words, such as replac-
ing apostrophes and blank underline into dashes or blanks. For example, peer-
reviewed becomes peer reviewed.

Digit suppression consists of suppressing digits. For example, book24545-18 be-
comes book.

Punctuation elimination suppresses punctuation signs. For example, C.D. becomes
CD.

These normalisation operations must be used with care for several reasons. In
particular:

4.2 Name-based techniques 77

– they are often language-dependent, e.g., they work for occidental languages;
– they are order dependent: they do not guarantee to bring the same results when

applied in any order;
– they can result in loosing some meaningful information; for example, carbon-14

becomes carbon or sentence separation, which is very useful for parsing, is lost;
– they may reduce variations, but increase synonyms. For example, in French livre

and livré are different words respectively meaning book and shipped.

String equality

String equality returns 0 if the strings under consideration are not identical and 1 if
they are identical. This can be taken as a similarity measure.

Definition 4.8 (String equality). String equality is a similarity σ : S × S → [0 1]
such that ∀x, y ∈ S, σ(x, x) = 1 and if x �= y, σ(x, y) = 0.

It can be performed after some syntactic normalisation of the string, e.g., down-
casing, encoding conversion, accent normalisation.

This measure does not explain how strings are different. A more immediate way
of comparing two strings is the Hamming distance which counts the number of posi-
tions in which the two strings differ [Hamming, 1950]. We present here the version
normalised by the length of the longest string.

Definition 4.9 (Hamming distance). The Hamming distance is a dissimilarity δ :
S× S → [0 1] such that:

δ(s, t) =

(∑min(|s|,|t|)
i=1 s[i] �= t[i]

)
+ ||s| − |t||

max(|s|, |t|)

Substring test

Different variations can be obtained from the string equality, such as considering that
strings are very similar when one is a substring of another:

Definition 4.10 (Substring test). Substring test is a similarity σ : S × S → [0 1]
such that ∀x, y ∈ S, if there exist p, s ∈ S where x = p + y + s or y = p + x + s,
then σ(x, y) = 1, otherwise σ(x, y) = 0.

This is obviously a similarity. This measure can be refined in a substring similar-
ity which measures the ratio of the common subpart between two strings.

Definition 4.11 (Substring similarity). Substring similarity is a similarity σ : S ×
S → [0 1] such that ∀x, y ∈ S, and let t be the longest common substring of x and y:

σ(x, y) =
2|t|

|x|+ |y|

78 4 Basic techniques

It is easy to see that this measure is indeed a similarity. One could also consider
a subsequence similarity as well. This definition can be used for building functions
based on the longest common prefix or longest common suffix.

Thus, for example, the similarity between article and aricle would be 4/7 = .57,
while between article and paper would be 1/7 = .14, and, finally, between article
and particle would be 6/7 = .86.

A prefix or suffix pre-similarity can be defined on this model from the prefix and
suffix tests, which test whether one string is the prefix or suffix of another. These
measures would not be symmetric. Prefix and suffix pre-similarity can be useful as
a test for strings denoting a more general concept than another (in many languages,
adding clauses to a term would restrict its range). For instance, reviewed article is
more specific than article. It can also be used for comparing strings and similar ab-
breviations, e.g., ord and order.

The n-gram similarity is also often used in comparing strings. It computes the
number of common n-grams, i.e., sequences of n characters, between them. For
instance, trigrams for the string article are: art, rti, tic, icl, cle.

Definition 4.12 (n-gram similarity). Let ngram(s, n) be the set of substrings of s
of length n. The n-gram similarity is a similarity σ : S× S → R such that:

σ(s, t) = |ngram(s, n) ∩ ngram(t, n)|

The normalised version of this function is as follows.

σ(s, t) =
|ngram(s, n) ∩ ngram(t, n)|

min(|s|, |t|)− n + 1

This function is quite efficient when only some characters are missing.
Thus, for example, the similarity between article and aricle would be 2/4 = .5,

while between article and paper would be 0, and, finally, between article and particle
would be 5/6 = .83.

It is possible, to add extra characters at the beginning and end of strings for
dealing with too small strings.

Edit distance

Intuitively, an edit distance between two objects is the minimal cost of operations
to be applied to one of the objects in order to obtain the other one. Edit distances
were designed for measuring similarity between strings that may contain spelling
mistakes.

Definition 4.13 (Edit distance). Given a set Op of string operations (op : S → S),
and a cost function w : Op → R, such that for any pair of strings there exists a
sequence of operations which transforms the first one into the second one (and vice
versa), the edit distance is a dissimilarity δ : S× S → [0 1] where δ(s, t), is the cost
of the less costly sequence of operations which transforms s into t.

δ(s, t) = min
(opi)I ;opn(...op1(s))=t

(
∑
i∈I

wopi
)

4.2 Name-based techniques 79

In string edit distance, the operations that are usually considered include inser-
tion of a character ins(c, i), replacement of a character by another sub(c, c′, i) and
deletion of a character del(c, i). It can be easily checked that these operations are
such that ins(c, i) = del(c, i)−1 and sub(c, c′, i) = sub(c′, c, i)−1. Each operation
is assigned a cost and the distance between two strings is the sum of the cost of each
operation on the less costly set of operations.

The Levenshtein distance [Levenshtein, 1965] is the minimum number of inser-
tions, deletions, and substitutions of characters required to transform one string into
the other. It is the edit distance with all costs equal to 1. The Needleman–Wunch
distance [Needleman and Wunsch, 1970], in turn, is the edit distance with a higher
costs for ins and del.

It can be proved that the edit distance is indeed a distance if ∀op ∈ Op,wop =
wop−1 .

Example 4.14. The (rounded) Levenshtein distance table between the class labels of
ontologies in Fig. 2.7 (p. 37):

Sc
ie

nc
e

C
hi

ld
re

n

B
oo

k

Pe
rs

on

D
V

D

Te
xt

bo
ok

Pr
od

uc
t

Po
ck

et

Pu
bl

is
he

r

Po
pu

la
r

C
D

Politics 0.75 1.00 0.88 0.88 1.00 1.00 0.75 0.75 0.67 0.75 1.00
Thing 0.71 0.75 1.00 1.00 1.00 0.88 1.00 1.00 0.89 1.00 1.00

Autobiography 0.92 0.85 0.85 0.92 1.00 0.85 0.92 0.92 0.85 0.85 1.00
Novel 0.86 0.88 0.80 1.00 1.00 1.00 0.86 0.67 0.89 0.71 1.00

Biography 1.00 0.89 0.78 0.89 1.00 1.00 0.89 0.89 1.00 0.89 1.00
Writer 0.86 0.75 1.00 1.00 1.00 0.88 0.86 0.83 0.67 0.86 1.00
Essay 1.00 1.00 1.00 0.83 1.00 1.00 1.00 1.00 0.89 0.86 1.00

Volume 0.86 0.75 0.83 1.00 1.00 1.00 0.71 0.83 0.78 0.71 1.00
LiteraryCritic 0.93 0.93 1.00 0.86 1.00 0.93 0.86 0.93 0.93 0.86 0.93

Poetry 0.86 0.88 0.83 0.83 1.00 0.88 0.71 0.67 0.89 0.71 1.00
Literature 0.80 0.90 1.00 0.80 1.00 0.90 0.80 0.90 0.90 0.80 1.00

Human 0.86 0.88 1.00 0.83 1.00 1.00 1.00 1.00 0.89 0.71 1.00

The closest names are Pocket and Novel, Pocket and Poetry, as well as Writer and
Publisher and Politics and Publisher. These names are relatively far from each others
(.67). So, in this case no correspondence can be found from such measures alone.
However, the same measure on properties will obviously find the correspondence
between author and author, for instance.

Other measures compute the cost of an edition operation as a function of the
characters or substrings on which the operation applies. For that purpose, they use
a cost matrix for each operation. A well known example of such a measure is the
Smith–Waterman measure [Smith and Waterman, 1981] which was adapted to com-
pute the distance between biological sequences based on the molecules that were
manipulated. Other such measures are the Gotoh [Gotoh, 1981] and Monge–Elkan
[Monge and Elkan, 1997] distance functions.

80 4 Basic techniques

The Jaro measure has been defined for matching proper names that may contain
similar spelling mistakes [Jaro, 1976, Jaro, 1989]. It is not based on an edit distance
model, but on the number and proximity of the common characters between two
strings. This measure is not a similarity because it is not symmetric.

Definition 4.15 (Jaro measure). The Jaro measure is a non symmetric measure
σ : S× S → [0 1] such that

σ(s, t) =
1
3
× (
|com(s, t)|

|s| +
|com(t, s)|

|t| +
|com(s, t)| − |transp(s, t)|

|com(s, t)|),

with

s[i] ∈ com(s, t) if and only if ∃j ∈ [i− (min(|s|, |t|)/2 i + (min(|s|, |t|)/2]

and transp(s, t) are the elements of com(s, t) which occur in a different order in s
and t.

For instance, if we again compare article with aricle, aritcle and paper, the number
of common letters will respectively be 6, 7 and 1 (because in the last case, the ‘e’
in paper is too far away from that in article). The number of transposed common
letters will be 0, 1 and 0 respectively. As a consequence, the similarities between
these strings are: .95, .90 and .45.

This measure has been improved by favouring matches between strings with
longer common prefixes [Winkler, 1999].

Definition 4.16 (Jaro–Winkler measure). The Jaro–Winkler measure σ : S× S →
[0 1] is as follows:

σ(s, t) = σJaro(s, t) + P ×Q× (1− σJaro(s, t))
10

,

such that P is the length of the common prefix and Q is a constant.

In this case, the similarity for the three strings compared to article with Q = 4
are: .99, .98 and .45. These measures only improve on the previous ones by explicitly
providing a model of mistakes that penalises less the comparison.

Another similar measure is Smoa [Stoilos et al., 2005] which is adapted to the
way computer users define identifiers. It depends on common substring lengths and
non common substring lengths, the second part being substracted from the first one.
This measure has a value between −1 and 1.

Token-based distances

The following techniques come from information retrieval and consider a string as a
(multi)set of words (also called bag of words), i.e., a set in which a particular item can
appear several times. These approaches usually work well on long texts (comprising
many words). For that reason, it is helpful to take advantage of other strings that are
attached to ontology entities. This can be adapted to ontology entities as follows:

4.2 Name-based techniques 81

– By aggregating different sources of strings: identifiers, labels, comments, doc-
umentation, etc. Some systems go further by aggregating the tokens that corre-
spond to connected entities [Qu et al., 2006].

– By splitting strings into independent tokens. For example, InProceedings be-
comes In and Proceedings, peer-reviewed article becomes peer, reviewed and
article.

Ontology entities are then identified with bags of words (or multisets) suitable for
manipulation by using information retrieval techniques. Many different similarities
or dissimilarities being applied to sets of entities can thus be applied to these bags
of words. For example, the matching coefficient is the complement of the Hamming
distance on sets (§4.4.1) and the Dice coefficient is the complement of the Hamming
distance on multisets, i.e., using the union, intersection and cardinality of multisets
instead of sets.

Original measures are those based on the corpus of such strings, i.e., the set of
all such strings found in one of the ontologies or in both of them. These measures
are no longer intrinsic to the strings to be compared but depend on the corpus.

They usually consider a bag of words s as a vector−→s belonging to a metric space
V in which each dimension is a term (or token) and each position in the vector is the
number of occurrences of the token in the corresponding bag of words. This is one
way to represent multisets. Each document can be considered as a point in this space
identified by its coordinate vector [Salton, 1971, Salton and McGill, 1983].

Once the entities have been transformed into vectors, usual metric space dis-
tances can be used: Euclidean distance, Manhattan distance (also known as city
blocks) and any instance of the Minkowski distance (see also p. 123). We present
here the cosine similarity which measures the cosine of the angles made by two vec-
tors. It is very often used in information retrieval.

Definition 4.17 (Cosine similarity). Given −→s and
−→
t , the vectors corresponding to

two strings s and t in a vector space V , the cosine similarity is the function σV :
V × V → [0 1] such that:

σV (s, t) =

∑
i∈|V |

−→s i ×
−→
t i√∑

i∈|V |
−→s 2

i ×
∑

i∈|V |
−→
t 2

i

Some more elaborate techniques use reduced spaces, like those obtained by cor-
respondence analysis, in order to deal with a smaller dimension as well as to auto-
matically map words of similar meanings to the same dimension. A famous example
of such a technique, which is by using singular value decomposition, is known as
latent semantic indexing [Deerwester et al., 1990].

A very common measure is TFIDF (Term frequency-Inverse document fre-
quency) [Robertson and Jones, 1976] which is used for scoring the relevance of a
document, i.e., a bag of words, to a term by taking into account the frequency of
appearance of the term in the corpus. It is usually not a measure of similarity: it as-
sesses the relevance of a term to a document. It is used here to assess the relevance

82 4 Basic techniques

of a substring to a string by comparing the frequency of appearance of the string in
the document with regard to its frequency in the whole corpus.

Definition 4.18 (Term frequency-Inverse document frequency). Given a corpus
C of multisets, we define the following measures:

∀t ∈ S,∀s ∈ C, tf(t, s) = t#s (term frequency)

∀t ∈ S, idf(t) = log

(
|C|

|{s ∈ C; t ∈ s}|

)
(inverse document frequency)

TFIDF (s, t) = tf(t, s)× idf(t) (TFIDF)

Many systems use measures based on TFIDF. These measures compute, for each
term in the strings, their relevance with regard to the corpus based on TFIDF. Then,
they use vector space techniques for computing a distance between the two strings.
There are several options for doing so depending on the selected space: this can be the
whole corpus, the union of terms covered by the two strings or only the intersection
of the terms involved in both strings. The most often used aggregation measure is the
cosine similarity.

Path comparison

Path difference consists of comparing not only the labels of objects but the sequence
of labels of entities to which those bearing the label are related. For instance, in the
left-hand ontology of Fig. 2.7, the Science class can be identified by the path Prod-
uct:Book:Science. In a first approximation, these can be considered as a particular
way to aggregate tokens in an ordered fashion. A simple (and only) example is the
one which concatenates all the names of the superclasses of classes before compar-
ing them. So the result is dependent on the individual string comparison aggregated
in some way.

Definition 4.19 (Path distance). Given two sequences of strings, 〈si〉ni=1 and
〈s′j〉mj=1, their path distance is defined as follows:

δ(〈si〉ni=1, 〈s′j〉mj=1) = λ× δ′(sn, s′m) + (1− λ)× δ(〈si〉n−1
i=1 , 〈s′j〉m−1

i=1)

such that
δ(〈〉, 〈s′j〉kj=1) = δ(〈si〉ki=1, 〈〉) = k

with δ′ being one of the other string or language-based distance and λ ∈ [0 1].

For instance, we can take the string equality distance as δ′, scoring 0 when the
strings are equal, and .7 as λ. Then if we have to compare Product:Book:Science
with Book:Essay:Science and Product:Cultural:Book:Science, the distances will re-
spectively be: .273 and .09.

This measure is dependent on the similarity between the last element of each
path: this similarity is affected by a λ penalty but every subsequent step is affected

4.2 Name-based techniques 83

by a λ×(1−λ)n penalty. So this measure takes into account the prefix, but the prefix
can only influence the result to an extent which decreases as its distance from the end
of the sequence increases. As can be seen, this measure is dependent on the rank of
the elements to compare in the path. A more accurate, but expensive, measure, would
choose the best match between both paths and penalise the items remote from the end
of the path. Another way to take these paths into account is simply to apply them as
a distance on sequences, such as described in [Valtchev, 1999].

Summary on string-based methods

The results given so far for these string comparisons are useful if people use very
similar strings to denote the same concepts. If synonyms with different structures are
used, this will yield a low similarity. Selecting pairs of strings with low similarity,
in turn, yields many false positives since two strings can be very similar, e.g., Inpro-
ceedings and proceedings, and denote relatively different concepts. These measures
are most often used in order to detect if two very similar strings are used. Otherwise,
matching must use more reliable sources of information.

There are several software packages for computing string distances. Table 4.1
provides a brief comparison of distances available in four Java packages: Simetrics1,
SecondString2, the Alignment API3 and SimPack4. A comparison of the metrics of
the second package has been provided in [Cohen et al., 2003b].

4.2.2 Language-based methods

So far we have considered strings as sequences of characters. When considering
language phenomenon, these strings become texts (theoretical peer-reviewed journal
article). Texts can be segmented into words: easily identified sequence of letters that
are derived from an entry in a dictionary (theoretical, peer, reviewed, journal, article).
These words do not occur in a bag (as used in information retrieval) but in a sequence
which has a grammatical structure. Very often words, like peer, bear a meaning and
correspond to some concepts, but the more useful concepts to be properly handled in
a text are terms, such as peer-review, or peer-reviewed journal.

Terms are phrases that identify concepts; they are thus often used for labelling
concepts in ontologies. As a consequence, ontology matching could take great ad-
vantage of recognising and identifying them in strings. This amounts to recognise
the term Peer-reviewed journal in the labels scientific periodicals reviewed by peers
(and not in journal review paper).

Language-based methods rely on using Natural Language Processing (NLP)
techniques to help extract the meaningful terms from a text. Comparing these terms
and their relations should help assess the similarity of the ontology entities they name

1 http://www.dcs.shef.ac.uk/˜sam/stringmetrics.html
2 http://secondstring.sourceforge.net
3 http://alignapi.gforge.inria.fr
4 http://www.ifi.unizh.ch/ddis/simpack.html

84 4 Basic techniques

Table 4.1. String measures available in Simetrics, SecondString, Alignment API and SimPack
Java packages.

Simetrics SecondString AlignAPI SimPack
n-grams n-grams

Levenshtein Levenshtein Levenshtein Levenshtein
Jaro Jaro Jaro

Jaro–Winkler Jaro–Winkler Jaro–Winkler
Needleman–Wunch Needleman–Wunch Needleman–Wunch

Smoa
Smith–Waterman

Monge–Elkan Monge–Elkan
Gotoh

Matching coefficient
Jaccard Jaccard Jaccard

Dice coefficient Dice coefficient
TFIDF TFIDF

Cityblocks Cityblocks
Euclidean Euclidean

Cosine Cosine
Overlap Overlap
Soundex

and comment. Although these are based on some linguistic knowledge, we distin-
guish methods which rely on algorithms only and those which make use of external
resources such as dictionaries.

Intrinsic methods: Linguistic normalisation

Linguistic normalisation aims at reducing each form of a term to some stan-
dardised form that can be easily recognised. Table 4.2 shows that the same
term (theory paper) can appear under many different forms. The work in
[Maynard and Ananiadou, 2001] distinguishes three main kinds of term variation:
morphological (variation on the form and function of a word based on the same root),
syntactic (variation on the grammatical structure of a term) and semantic (variation
on one aspect of the term, usually using a hypernym or hyponym). Various subtypes
of these broad categories are exemplified in Table 4.2. Multilingual variation, i.e.,
where the term variant is expressed in a different language, can be naturally added to
these. Moreover, these types of variations can be combined in various ways.

Complete linguistic software chains have been developed for quickly obtaining a
normal form of strings denoting terms. This is available through shallow parsers or
part-of-speech taggers [Brill, 1992]. These usually perform the following functions:

Tokenisation: Tokenisation is the operation described in Sect. 4.2.1. It consists of
segmenting strings into sequences of tokens by a tokeniser which recognises

4.2 Name-based techniques 85

Table 4.2. Variants of the term theory paper (adapted from [Maynard, 1999] and
[Euzenat et al., 2004a]).

Type Subtype Example
Morphological Inflection theory papers

Derivation theoretical paper
Inflectional-Derivational theoretical papers

Syntactic Insertion theory review paper
Permutation paper on theory
Coordination philosophy and theory paper

Morphosyntactic Derivation-Coordination philosophical and theoretical paper
Inflection-Permutation papers on theory

Semantic foundational paper
Multilingual French article théorique

punctuation, cases, blank characters, digits, etc. For example, peer-reviewed pe-
riodic publication becomes 〈peer, reviewed, periodic, publication〉.

Lemmatisation: The strings underlying tokens are morphologically analysed in or-
der to reduce them to normalised basic forms. Morphological analysis makes it
possible to find flexion and derivations of a root. This involves suppressing tense,
gender or number marks. Retrieving the root is called lemmatisation. Currently,
systems can use some approximate lemmatisation techniques called stemming
[Lovins, 1968, Porter, 1980] which strip suffixes from terms. For example, re-
viewed becomes review.

Term extraction: More elaborate technologies enable the extraction of terms from
a text [Jacquemin and Tzoukermann, 1999, Bourigault and Jacquemin, 1999,
Maynard and Ananiadou, 2001, Cerbah and Euzenat, 2001]. It is generally re-
lated to what is called corpus linguistics and requires a relatively large amount
of text. Terminology extractors identify terms from the repetition of morpholog-
ically similar phrases in the texts and the use of patterns, e.g., noun1 noun2 →
noun2 on noun1. This would recognise that the term theory paper is the same
term as paper on theory.

Stopword elimination: The tokens that are recognised as articles, prepositions,
conjunctions, etc. (usually words, such as to or a), are marked to be discarded
because they are considered as non meaningful (empty) words for matching. For
example, collection of article becomes collection article.

Once these techniques have been applied, ontology entities are represented as
sets of terms, not words, that can be compared with the same techniques as presented
before.

86 4 Basic techniques

Extrinsic methods

Extrinsic linguistic methods use external resources, such as dictionaries and lexicons.
Several kinds of linguistic resources can be exploited in order to find similarities
between terms.

Lexicons. A lexicon, or dictionary, is a set of words together with a natural language
definition of these words (see for instance those of Example 4.21). Of course, for
a particular word, e.g., Article, there can be several such definitions. Dictionaries
can be used with gloss-based distances (see below).

Multi-lingual lexicons. Multi-lingual lexicons are lexicons in which the definition
is replaced by the equivalent terms in another language, e.g., Paper in English
corresponds to Article in French. Such dictionaries can be very useful if ontology
labels are expressed in different languages. They can be used for matching as
well as for disambiguating terms, i.e., identifying their intended sense, before
matching.

Semantico-syntactic lexicons. Semantico-syntactic lexicons and semantic lexicons
are resources used in natural language analysers. They very often not only record
names but their categories, e.g., non animate, liquid, and record the types of
arguments taken by verbs and adjectives, e.g., to flow takes a liquid as subject
and has no object. These are difficult to create and are not much used in ontology
matching.

Thesauri. A thesaurus is a kind of lexicon to which some relational information
has been added. It usually contains relations, named hypernym, e.g., Biography
is a more general term than Autobiography, which is hyponym, synonym, e.g.,
Paper means the same as Article, antonym, e.g., practice is the opposite of theory.
WordNet [Miller, 1995] is such a thesaurus which distinguishes clearly between
word senses by grouping words into sets of synonyms (synsets).

Terminologies. A terminology is a thesaurus for terms, which very often contains
phrases rather than single words. They are usually domain specific and tend to
be less equivocal than dictionaries.

This is not an exhaustive nor an authorised description of linguistic resources but it
provides a typology of the kinds of properties on which a similarity between terms
can be assessed on a linguistic basis.

These resources can be defined for one language or be specific to some domain.
In the latter case, they tend to be more adapted when texts or ontologies concern
this domain because they retain specialised senses, or senses that do not exist in the
everyday language. They may also contain proper names and common abbreviations
that are used in the domain. For instance, a company could expand CD as Compact
Disc, PO as Purchase Order instead of Post Office or Project Officer.

It is worth noting that linguistic resources are introduced in order to deal with
synonyms (the fact that matching entities are named differently). By increasing the
interpretation (sense) of words, they increase the chances of finding the matching
terms (true positives). On the other side this also increases homonyms (the fact that
more words are available for naming the matching entities) and the chances to match

4.2 Name-based techniques 87

non matching terms (false positives). Dealing with this problem is known as word
sense disambiguation [Lesk, 1986, Ide and Véronis, 1998]. Word sense disambigua-
tion tries to restrict the candidate senses (and the candidate matches) from the con-
text, especially by selecting the senses in relation to the other associated words and
their senses.

We illustrate the use of external resources with the help of WordNet5
[Miller, 1995, Fellbaum, 1998]. WordNet is an electronic lexical database for En-
glish (it has been adapted to other languages, see for instance EuroWordNet6), based
on the notion of synsets or sets of synonyms. A synset denotes a concept or a sense
of a group of terms. WordNet also provides an hypernym (superconcept/subconcept)
structure as well as other relations such as meronym (part of relations). It also pro-
vides textual descriptions of the concepts (gloss) containing definitions and exam-
ples. We will denote WordNet as a partially ordered synonym resource.

Definition 4.20 (Partially ordered synonym resource). A partially ordered syn-
onym resource Σ over a set of words W , is a triple 〈E,≤, λ〉, such that E ⊆ 2W is
a set of synsets, ≤ is the hypernym relation between synsets and λ is a function from
synsets to their definition (a text that is considered here as a bag of words in W). For
a term t, Σ(t) denotes the set of synsets associated with t.

Example 4.21 (WordNet entry). We reproduce here the WordNet (version 2.0) entry
for the word author. Each sense is numbered in superscript:

author1 noun: Someone who originates or causes or initiates something;
Example ‘he was the generator of several complaints’. Synonym generator,
source. Hypernym maker. Hyponym coiner.
author2 noun: Writes (books or stories or articles or the like) professionally
(for pay). Synonym writer2. Hypernym communicator. Hyponym abstractor,
alliterator, authoress, biographer, coauthor, commentator, contributor, cyber-
punk, drafter, dramatist, encyclopedist, essayist, folk writer, framer, gag-
man, ghostwriter, Gothic romancer, hack, journalist, libretist, lyricist, novelist,
pamphleter, paragrapher, poet, polemist, rhymer, scriptwriter, space writer,
speechwriter, tragedian, wordmonger, word-painter, wordsmith, Andersen,
Assimov...
author3 verb.: Be the author of; Example ‘She authored this play’. Hypernym
write. Hyponym co-author, ghost.

This resembles a traditional dictionary entry apart from the Hypernym and Hy-
ponym features and the explicit mention of the considered sense. The hypernym re-
lations for the senses of the words creator, writer, author, illustrator, and person are
presented in Fig. 4.1.

There are at least three families of methods for using WordNet as a resource for
matching terms used in ontology entities:

5 http://wordnet.princeton.edu
6 http://www.illc.uva.nl/EuroWordNet/

88 4 Basic techniques

person God

creator1creator2

artist maker communicator litterate legal document

illustrator author1 writer2=author2 writer1writer3

illustrator author creator Person writer

Fig. 4.1. The fragment of the WordNet hierarchy (limited to nouns) dealing with author,
writer, creator, illustrator and person.

– considering that two terms are similar because they belong to some common
synset;

– taking advantage of the hypernym structure for measuring the distances between
synsets corresponding to two terms;

– taking advantage of the definitions of concepts provided by WordNet in order to
evaluate the distance between the synsets associated with two terms.

A matcher based on WordNet can be designed by translating the (lexical) re-
lations provided by WordNet to logical relations according to the following rules
[Giunchiglia et al., 2004]:

– t � t′, if t is a hyponym or meronym of t′. For example, author is a hyponym of
creator, therefore we can conclude that author � creator.

– t � t′, if t is a hypernym or holonym of t′. For example, Europe is a holonym of
France, therefore we can conclude that Europe � France.

– t = t′, if they are connected by synonymy relation or they belong to one synset.
For example, writer and author are synonyms, therefore we can conclude that
writer = author.

– t ⊥ t′, if they are connected by antonymy relation or they are the siblings in the
part of hierarchy. For example, Italy and France are siblings in the WordNet part
of hierarchy, therefore we can conclude that Italy ⊥ France.

Simple measures can be defined here (we only consider synonyms because they
are the basis of WordNet synsets but other relationships can be used as well). The
simplest use of synonyms is as follows:

Definition 4.22 (Synonymy similarity). Given two terms s and t and a synonym
resource Σ, the synonymy is a similarity σ : S× S → [0 1] such that:

σ(s, t) =

{
1 if Σ(s) ∩Σ(t) �= ∅
0 otherwise

4.2 Name-based techniques 89

This would consider that the similarity between author and writer is maximal (1.)
and that between author and creator is minimal (0.).

Example 4.23 (Synonymy). The synonymy similarity between illustrator, author, cre-
ator, Person, and writer is given by the following table:

illustrator

author
creator

Person
write

r

illustrator 1. 0. 0. 0. 0.
author 0. 1. 0. 0. 1.
creator 0. 0. 1. 0. 0.
Person 0. 0. 0. 1. 0.
writer 0. 1. 0. 0. 1.

This strict exploitation of synonyms does not allow analysis of how far non syn-
onymous objects are nor how close synonymous objects are. Since synonymy is a
relation, all the measures on the graph of relations can be used on WordNet syn-
onyms. Another measure computes the cosynonymy similarity.

Definition 4.24 (Cosynonymy similarity). Given two terms s and t and a synonym
resource Σ, the cosynonymy is a similarity σ : S× S → [0 1] such that:

σ(s, t) =
|Σ(s) ∩Σ(t)|
|Σ(s) ∪Σ(t)|

Example 4.25 (Cosynonymy similarity). The synonymy similarity between illustrator,
author, creator, Person, and writer is given by the following table:

illustrator

author
creator

Person
write

r

illustrator 1. 0. 0. 0. 0.
author 0. 1. 0. 0. .25
creator 0. 0. 1. 0. 0.
Person 0. 0. 0. 1. 0.
writer 0. .25 0. 0. 1.

Some elaborate measures take into account that the terms can be part of several
synsets and use a measure in the hyponym/hypernym hierarchy between synsets.
A simple measure, known as edge-count, counts the number of edges separating
two synsets in Σ (or the structural topological dissimilarity, see Sect. 4.3.2). More
elaborate measures weight edge count with the position of synsets in the hierarchy.
In particular, a measure developed specifically for WordNet is the one proposed by
Wu and Palmer. It is presented in Sect. 4.3.2 because the hierarchy is, in this respect,
similar to a class hierarchy. All measures defined in Sect. 4.3.2 can be used on the
WordNet hypernym graph.

Other measures rely on an information theoretic perspective. They are based on
the assumption that the most probable a concept, the less information it carries. So

90 4 Basic techniques

the information content of a concept is inverse to its probability of occurence. In the
similarity proposed in [Resnik, 1995, Resnik, 1999], each synset (c) is associated
with a probability of occurrence (π(c)) of an instance of the concept in a particular
corpus. Usually, π(c) is the the sum of the synset word occurrences divided by the
total number of concepts. This probability is obtained from a corpus study. It is such
that the more specific the concept, the lower its probability. The Resnik semantic
similarity between two terms is a function of the more general synset common to both
terms. It considers the maximum information content (or entropy), of the possible
such synsets, taken as the negation of the logarithm of the probability of occurence.

Definition 4.26 (Resnik semantic similarity). Given two terms s and t and a par-
tially ordered synonym resource Σ = 〈E,≤, λ〉 provided with a probability measure
π, Resnik semantic similarity is a similarity σ : S× S → [0 1] such that:

σ(s, t) = max
k;∃c,c′∈E;s∈c∧t∈c′∧c≤k∧c′≤k

(−log(π(k)))

We do not provide examples of corpus-based similarity because the results are
dependent on the corpus on which it is based (here for defining π). Examples of such
measures based on the Brown corpus7 are given in [Budanitsky and Hirst, 2006].

This measure uses the maximum, but one could have chosen instead an average
or a sum of all the pairs of synsets associated with the two terms.

Other information-theoretic similarities depend on the increase of the informa-
tion content measure from the terms to their common hypernyms instead of the
shared information content. This is the case in the Lin information-theoretic simi-
larity [Lin, 1998]. This method specifies the probabilistic degree of overlap between
two synsets:

Definition 4.27 (Information-theoretic similarity). Given two terms s and t and
a partially ordered synonym resource Σ = 〈E,≤, λ〉 provided with a probability π,
Lin information theoretic similarity is a similarity σ : S× S → [0 1] such that:

σ(s, t) = max
k;∃c,c′∈Σ;s∈c∧t∈c′∧c≤k∧c′≤k

2× log(π(k))
log(π(s)) + log(π(t))

These similarities are not normalised.
A final way to compare terms found in strings through a thesaurus, like WordNet,

is to use the definition (gloss) given to these terms in WordNet. In this case, any dic-
tionary entry s ∈ Σ is identified by the set of words corresponding to λ(s). Then any
measure defined in Sect. 4.2.1 can be used for comparing the strings [Lesk, 1986].

Definition 4.28 (Gloss overlap). Given a partially ordered synonym resource Σ =
〈R,≤, λ〉, the gloss overlap between two strings s and t is defined by the Jaccard
similarity between their glosses:

σ(s, t) =
|λ(s) ∩ λ(t)|
|λ(s) ∪ λ(t)|

7 http://nora.hd.uib.no/icame/

4.2 Name-based techniques 91

Example 4.29 (Gloss overlap). For computing the gloss overlap similarity between
illustrator, author, creator, Person, and writer, we used the following treatments: take
gloss for all senses and add the term name; suppress quotations (‘. . . ’); suppress
empty words (or, and, the, a, an, for, of, etc.); suppress technical vocabulary, e.g.,
‘term’; suppress empty phrases, e.g., ‘usually including’; keep categories, e.g., law;
stem words. The gloss of author is given in Example 4.21.

The results have been taken as sets (not bags, so there is no repetition) of words
and syntactically compared, yielding the following table:

illustrator

author
creator

Person
write

r

illustrator 1. 0.05 0.07 0. 0.02
author 0.05 1. 0. 0. 0.19
creator 0.07 0. 1. 0.06 0.02
Person 0. 0. 0.06 1. 0.04
writer 0.02 0.19 0.02 0.04 1.

This result is consistent with the previous measures since the only previously match-
ing pair (author-writer) is still the highest scorer. This measure introduces new rela-
tions such as creator-illustrator, but still does not find the (possible) relation between
creator and author. This is entirely related to the quality of glosses in WordNet.

Another example of building a matcher by using (WordNet) glosses includes
counting the number of occurrences of the label of the source input sense in the
gloss of the target input sense. If this number is equal to a threshold, e.g., 1, the
less general relation can be returned. The reason for returning the less general rela-
tion is due to a common pattern of defining terms in glosses through a more general
term. For example, in WordNet creator is defined as ‘a person who grows or makes
or invents things’. Thus, following this strategy we could find that creator � per-
son. Some other variations of gloss-based matchers include considering glosses of
the parent (children) nodes of the input senses in the WordNet is a (part of) hierar-
chy [Giunchiglia and Yatskevich, 2004]. The relations produced by these matchers
depend heavily on the context of the matching task, and therefore, these matchers
cannot be applied in all the cases [Giunchiglia et al., 2006c].

Summary on linguistic methods

Many methods presented in this section have been implemented in the Perl package8

WordNet::similarity [Pedersen et al., 2004] and the Java package SimPack9 (see Ta-
ble 4.3). They have been thoroughly compared in [Budanitsky and Hirst, 2006].

Linguistic resources, such as stemmers, part-of-speech taggers, lexicons, and the-
sauri are invaluable resources since they allow the interpretation of the terms used in
the expressions of ontologies. They provide a more accurate apprehension of these
labels.
8 http://wn-similarity.sourceforge.net/
9 http://www.ifi.unizh.ch/ddis/simpack.html

92 4 Basic techniques

Table 4.3. List of language measures based on WordNet and available in the wn-similarity
Perl package and the SimPack Java package (some measures have not been presented yet).

WordNet::similarity SimPack
Resnik Resnik

Jiang–Conrath (1997)
Lin Lin

Leacock–Chodorow Leacock–Chodorow
Hirst–St.Onge ([Saint-Onge, 1995])

Edge count Edge count
Wu–Palmer Wu–Palmer

Extended Gloss Overlap
Vector on gloss

However, whenever the adequate resources are available for some language, they
mainly open new possible matches between entities because they recognise that two
terms can denote the same concept. Unfortunately, since they also recognise that
the same term may denote several concepts at once, these techniques provide many
possible matches from which to choose.

One way to choose among these representations is to take into account the struc-
ture of ontology entities in order to select the most coherent matches.

4.3 Structure-based techniques

The structure of entities that can be found in ontologies can be compared, instead of
or in addition to comparing their names or identifiers.

This comparison can be subdivided into a comparison of the internal structure of
an entity, i.e., besides its name and annotations, its properties or, in the case of OWL
ontologies, the properties which take their values in a datatype, or the comparison
of the entity with other entities to which it is related. The former is called internal
(§4.3.1) and the latter is called relational structure (§4.3.2). The internal structure is
the definition of entities without reference to other entities; the relational structure
is the set of relations that an entity has with other entities. As expected, the internal
structure is primarily exploited in database schema matching, while the relational
structure is more important in matching formal ontologies and semantic networks.

4.3.1 Internal structure

Internal structure based methods are sometimes referred to as constraint-based ap-
proaches in the literature [Rahm and Bernstein, 2001]. These methods are based on
the internal structure of entities and use such criteria as the set of their properties,
the range of their properties (attributes and relations), their cardinality or multiplic-
ity, and the transitivity or symmetry of their properties to calculate the similarity
between them.

4.3 Structure-based techniques 93

Entities with comparable internal structures or properties with similar domains
and ranges in two ontologies can be numerous. For that reason, these kinds of meth-
ods are commonly used to create correspondence clusters rather than to discover
accurate correspondences between entities. They are usually combined with other
element-level techniques, such as terminological methods, and are responsible for
reducing the number of candidate correspondences. They can be used with other ap-
proaches as a preprocessing step to eliminate most of the properties that are clearly
incompatible.

For illustrating these methods we consider the properties associated with the
Product and Volume entities in the example of Fig. 4.2 (the expected correspondences
are given in Fig. 2.9, p. 48).

Product

price
name
id
creator
topic

Volume

year
author

title
isbn

integer

string

uri

1..1

1..*

1..1
0..*

1..1

1..1

1..1

Fig. 4.2. Two sets of properties to be compared.

If we start from the elements of Fig. 4.2, there is no chance that pure terminolog-
ical similarity methods find them very similar, though year and creator may appear
the same to some edit distance methods. A linguistic method may be better able to
find a relationship between creator and author.

Comparing the internal structure of ontology entities amounts to comparing their
properties and composing the obtained result: the system can evaluate the similar-
ity between all components considered next (names, keys, datatypes, domains, car-
dinalities) or multiplicities and combine the results. The combination operation is
considered in Sect. 5.2, we focus here on the elementary comparison.

Property comparison and keys

In database schemas, unlike in formal ontologies, tables are provided with keys: a
combination of properties whose values uniquely identify an object. For a Book, it
would typically be the international standard book number (isbn), for a Person it can
be his or her name, birth place and date.

This information is primarily very useful for recognising that two individuals are
the same. Thus, keys are mostly used in extensional methods as a means to identify
individuals and then apply methods on common set of instances (§4.4).

However keys can also be used for identifying classes: two classes identified in
the same way are likely to represent the same set of objects. Moreover, even if two
schemas use different keys for the same class, e.g., identifying Person with a social

94 4 Basic techniques

security number, there can be secondary keys that perform the same functions, e.g.,
that the social security number is also considered a key in the other class. So, when
provided with keys, if they are highly compatible (similar names and types), it is
plausible that the classes are equivalent.

For instance, if Product has id as a key and Volume has isbn as a key, it can be
considered that these properties should correspond in case where the classes are the
same. This can be considered possible because both properties have the same type
(uri).

Datatype comparison

Property comparison involves comparing the property datatype (in OWL, this can be
the range of the relation or a Restriction applied to the property in the class). Contrary
to objects that require interpretations, datatypes can be considered objectively and it
is possible to determine how close a datatype is to another (ideally this can be based
on the interpretation of datatypes as sets of values and the set-theoretic comparison
of these datatypes [Valtchev, 1999, Valtchev and Euzenat, 1997]).

We distinguish here between a datatype, which corresponds to the way the val-
ues are stored in a computer (like integer, float, string or uri), and a domain, which
characterises a subset of a particular datatype (like [10 12] or ‘*book’). Datatypes are
considered here and domains are addressed in the next section.

Datatypes are not fully disjoint, though there are rules by which an object of one
type can be thought of as an object of another type and rules by which a value of
some type can be converted in the memory representation of another type (known as
casting in programming languages).

Ideally, the proximity between datatypes should be maximal when these are the
same types, lower when the types are compatible (for instance, integer and float are
compatible since they can be cast one into the other) and the lowest when they are
non compatible. In addition, domain comparison should ideally be based on datatype
comparison and the comparison of the sets of values covered by these domains. The
compatibility between property datatypes can be assessed by using an underlying
table lookup. An example of a part of such a table is given in Table 4.4.

Table 4.4. Part of a datatype compatibility table.

char fixed enumeration int number string
string 0.7 0.4 0.7 0.4 0.5 1.0
number 0.6 0.9 0.0 0.9 1.0 0.5

Such a table can be extracted, for languages like OWL, from the type hierar-
chy of XML Schema datatypes (see Fig. 4.3). In the example of Fig. 4.2, it can be
considered that since a uri is a subclass of string, the isbn may be related to name.

Example 4.30 (Datatype comparison). In the example of Fig. 4.2, data type compar-
ison would let us match price with year, both name and topics with title, and id with

4.3 Structure-based techniques 95

integer

nonPositiveInteger

negativeInteger

long

int

short

byte

nonNegativeInteger

unsignedLong

unsignedInt

unsignedShort

unsignedByte

positiveInteger

Fig. 4.3. Fragment of the XML Schema datatype hierarchy [Biron and Malhotra (ed.), 2004].

isbn. creator and author are left aside because they are object-valued properties. This
comparison yields interesting results since it finds the expected matches. However, it
also finds incorrect ones (price-year and topics-title) so these methods cannot be used
in isolation.

Domain comparison

Depending on the entities to be considered, what can be reached from a property
can be different: in classes these are domains while in individuals these are values.
Moreover, they can be structured in sets or sequences. It is thus important to consider
this fact in the comparison.

[Valtchev, 1999] proposes a framework in which the types or domains of proper-
ties must be compared on the basis of their interpretations: sets of values. Type com-
parison is based on their respective size, in which the size of a type is the cardinality
or multiplicity of the set of values it defines. The distance between two domains is
then given by the difference between their size and that of their common generalisa-
tion. This measure is usually normalised by the size of the largest possible distance
attached to a particular datatype. We give here an instance of this type of measure.

Definition 4.31 (Relative size distance). Given two domain expressions e and e′

over a datatype τ , the relative size distance δ : 2τ × 2τ → [0 1], is as follows:

δ(e, e′) =
|genτ (e ∨ e′)| − |genτ (e ∧ e′)|

|τ | ,

such that genτ (.) provides the generalisation of a type expression and ∨ and ∧ cor-
respond to the union and intersection of the types.

Example 4.32 (Relative size distance). Consider a property age in one class to be
compared with the property age of three other classes (schoolchild, teenager and
grown-up). The first property has a domain of [6 12], while the others have respective

96 4 Basic techniques

domains expressed by: [7 14], [14 22] and ≥ 10. All these properties have datatype
integer. The generalisation of these four domains are the domains themselves, the
union with [6 12] is respectively [6 14], [6 22], [6 +∞[, and the intersection is re-
spectively [7 12], ∅, and [10 12]. As a consequence, the distance will be respectively
3/|τ |, 17/|τ | and |τ |−3/|τ |. This corresponds to some intuition that the distance be-
tween domains depends on the difference between the values they cover in isolation
and in common.

There are three advantages of this measure. The most obvious one is that it is
normalised. The second one is that it is totally general (it is not expressed in terms
of integers). The third one is that it can easily be mapped to the usual measures that
are often used.

Usually, a common generalisation depends on the type: it is a set for enumerated
types and an interval for ordered types (it can also be a set of intervals). In the case
of dense types, the size of a domain is the usual measure of its size (Euclidean dis-
tance can be used for real or floating point numbers). The case of infinite types has
to be taken adequately (by evaluating the largest possible domain in a computer or
by normalising with regard to the actual corpus) [Valtchev, 1999]. Normalising over
the largest distance in the corpus, if possible, is often a good idea. Indeed, it is not
reasonable, for example, to normalise the age of people with that of planets or their
size even if they use the same unit. Another advantage of this framework is that it en-
compasses value comparisons which can be considered as singletons and compared
with domains if necessary.

Comparing multiplicities and properties

Properties can be constrained by multiplicities (as they are called in UML). Multi-
plicities are the acceptable cardinalities of the set of values of a property (for a given
object). Similar to compatibilities between datatypes, compatibility between cardi-
nalities can be established based on a table look-up. An example of such a table for
DTDs is given in Table 4.5, following the work in [Lee et al., 2002].

Table 4.5. A cardinality compatibility table.

* + ? none
* 1.0 0.9 0.7 0.7
+ 0.9 1.0 0.7 0.7
? 0.7 0.7 1.0 0.8

none 0.7 0.7 0.8 1.0

In OWL, cardinalities or multiplicities are expressed through the minCardinality,
maxCardinality and cardinality restrictions. Multiplicities can be expressed as an in-
terval of the set of positive integers [0 +∞[. As such they are domains of the integer

4.3 Structure-based techniques 97

type. Two multiplicities are compatible if the intersection of the corresponding inter-
vals is non empty. Any measure on the integer datatype can be used for assessing the
similarity between multiplicities (see previous paragraph). However, in this case we
choose a simpler distance inspired from the Jaccard similarity.

Values can be collected by a particular construction (set, list, multiset) on which
cardinality constraints are applied. Again, it is possible to compare these constructed
datatypes by comparing (i) the datatypes on which they are constructed and (ii)
the cardinalities that are applied to them. For instance, sets of 2 and 3 children are
closer to a set of 3 people than to a set of 10–12 flowers (if children are people). This
technique is used in [Euzenat and Valtchev, 2004].

Definition 4.33 (Multiplicity similarity). Given two multiplicity expressions [b e]
and [b′ e′], the multiplicity similarity is a similarity between non negative integer
intervals σ : 2τ × 2τ → [0 1], such that:

σ([b e], [b′ e′]) =

⎧⎨
⎩

0 if b′ > e or b > e′

min(e, e′)−max(b, b′)
max(e, e′)−min(b, b′)

otherwise

For instance, if we have to compare multiplicity [0 6] with [2 8], [8 12] and
[0 +∞], the comparison will respectively yield .5, 0. and 6/MAXINT (the latter is
very low but remains non null because it is compatible with the initial multiplicity).

Example 4.34 (Multiplicity comparison). In the example of Fig. 4.2, multiplicity
comparison can be used to further match id with isbn because they will both have
a cardinality of [1 1] and, unfortunately, will match price with year as well. However,
is can also be used to prefer matching name rather than topic to title because they
have the same multiplicities ([1 +∞] instead of [0 +∞]).

Other features

Other internal structural factors have been considered in database schema match-
ing. Since these are internal features, they can be very dependent on the knowledge
model. For example, the work in [Navathe and Buneman, 1986] discusses such addi-
tional property characteristics as uniqueness, static semantic integrity constraints, dy-
namic semantic integrity constraints, security constraints, allowable operations and
scale.

It is also possible in some languages to consider collection constructors, e.g., Set,
List, Bag or multiset, Array, and their compatibility. It is then necessary to compare
sets or lists of objects, e.g., the sequence of topics or the set of authors of a Book.
In this case, general techniques can be used for assessing the similarity or distance
between these sets depending on the similarity applying to the type of their elements.
Concerning sets, these methods will be presented in Sect. 4.4.1 in the context of
extension comparison. Concerning sequences, they can be adapted from some of the
measures that have been presented in Sect. 4.2.1 which have considered strings as

98 4 Basic techniques

sequences of characters and paths as sequences of strings. In addition, Sect. 5.3.2
explains how to compare sets of objects with similarities.

In [Ehrig and Sure, 2004], it is proposed that the definition of a set of rules can be
used for determining similarity between ontology entities. They point out that some
features from OWL related to internal structure, such as symmetry and restrictions
of values, could be used, but are discarded at the moment, as they do not have any
wide distribution.

Summary on internal structure

Internal structure, including the names of entities, is very important for matching be-
cause it provides a basis on which algorithms can rely. The techniques for comparing
them are efficient and easy to implement.

However, the internal structure does not provide much information on the entities
to compare: many very different types of objects can have properties with the same
datatypes. On the one hand, they can be used for eliminating incompatible corre-
spondences and promoting compatible ones. On the other hand, it is always possible
that different models of a concept use different, and incompatible, types. For these
reasons, internal structure comparisons must always be used jointly with other tech-
niques.

4.3.2 Relational structure

An ontology can be considered to be a graph whose edges are labelled by rela-
tion names (mathematically speaking, this is the graph of the multiple relations of
the ontology: ≤, ∈, ⊥, :, =). Finding the correspondences between elements of
such graphs corresponds to solving a form of the graph homomorphism problem
[Garey and Johnson, 1979]. Namely it can be related to finding a maximum com-
mon directed subgraph.

Definition 4.35 (Maximum common directed subgraph problem). Given two di-
rected graphs G = 〈V,E〉 and G′ = 〈V ′, E′〉, does there exist F ⊆ E and F ′ ⊆ E′

and a pair of functions f : V → V ′ and f−1 : V ′ → V such that:

– ∀〈u, v〉 ∈ E|F , 〈f(u), f(v)〉 ∈ E′|F ′ ;
– ∀〈u′, v′〉 ∈ E′|F ′ , 〈f−1(u′), f−1(v′)〉 ∈ E|F ;
– ∀u ∈ V |F , f−1(f(u)) = u;
– ∀u′ ∈ V ′|F ′ , f(f−1(u′)) = u′;
– there is no other F ⊆ H ⊆ E and F ′ ⊆ H ′ ⊆ E′ satisfying these properties.

Note that graph matching is another type of problem which is presented in
Sect. 5.7.3.

In ontology matching, the problem is encoded as an optimisation problem (find-
ing the isomorphic subgraphs minimising some distance like the dissimilarity be-
tween matched objects or maximising similarity). These subgraphs do not have to

4.3 Structure-based techniques 99

be maximal. Moreover, the problem is very often adapted for multipartite graphs
separating classes from properties.

The similarity comparison between two entities from two ontologies can be based
on the relations of these entities with the other entities in the ontologies: the more two
entities are similar, the more their related entities should be alike. This remark can
be exploited in several ways depending on the kind of relations considered. More-
over, given the transitive nature of some relations, it is natural to extend this remark
through transitivity. Roughly, for each pair of relations, we can come up with 5 dif-
ferent ways of comparing the relations [Euzenat et al., 2004a]:

r comparing the entities in direct relation through r;
r− comparing the entities in the transitive reduction of relation r;
r+ comparing the entities in the transitive closure of relation r;
r−1comparing the entities coming through a relation r;
r ↑ comparing entities which are ultimately in r+ (the maximal elements of the clo-

sure).

These relations are exemplified as follows:

Example 4.36 (Exploiting relations in an ontology). Given the left-hand ontology of
Fig. 2.7, the relations based on subClass from Book are as follows:

subclass(Book) = subclass−(Book) ={Science, Pocket, Children}
subclass+(Book) ={Science, Pocket, Textbook, Popular, Children}

subclass−1(Book) ={Product}
subclass ↑ (Book) ={Textbook, Popular, Pocket, Children}

Table 4.6 displays the different ways of comparing two ontology entities based
on their relations with other entities. Of course, an approach can combine sev-
eral of the above criteria [Mädche and Staab, 2002, Euzenat and Valtchev, 2004,
Bach et al., 2004].

As can be observed from Table 4.6, some features have type String and can be
compared with the techniques proposed in Sect. 4.2.1. However, those with type
Class or Property really induce a graph structure. Moreover, the values which are
labelled by Set(·) are more difficult to deal with because this means that many edges
labelled by the feature will appear in the graph. The last part of the table is, in fact,
relevant to the extensional methods that will be presented in Sect. 4.4.

There are three types of relations that have been considered so far in relational
structure techniques: taxonomic relations, mereologic relations and all the involved
relations. These are considered below.

Taxonomic structure

The taxonomic structure, i.e., the graph made with the subClassOf relation, is the
backbone of ontologies. For this reason, it has been studied in detail by researchers
and is very often used as a comparison source for matching classes.

100 4 Basic techniques

Table 4.6. Features on which comparison of ontology entities can be made. The table reads:
Two Entities are similar if their Features are similar. This table is an adapted version of tables
reported in [Ehrig, 2007], [Euzenat et al., 2004a] and [Euzenat and Valtchev, 2004].

Entity Feature OWL Type
Class name rdf:label String

id rdf:ID String
comments rdf:comment String
same classes owl:sameClassAs Set(Class)
properties property Set(Property)
ultimate properties property↑ Set(Property)
direct superclasses owl:subClassOf− Set(Class)
direct subclasses owl:subClassOf−1− Set(Class)
superclasses owl:subClassOf∗ Set(Class)
subclasses owl:subClassOf−1∗ Set(Class)
ultimate subclasses owl:subClassOf−1 ↑ Set(Class)
direct instances rdf:type−1∗ Set(Individual)
instances rdf:type−1− Set(Individual)

Property name rdf:label String
id rdf:ID String
comments rdf:comment String
same properties owl:samePropertyAs Set(Property)
domain/range rdfs:domain/rdfs:range Class
direct superproperties rdfs:subProperty− Set(Property)
direct subproperties rdfs:subProperty−1− Set(Property)
superproperties rdfs:subProperty∗ Set(Property)
subproperties rdfs:subProperty−1∗ Set(Property)

Individual name rdf:label String
id rdf:ID String
comments rdf:comment String
same individuals owl:sameAs Set(Instance)
direct classes rdf:type− Set(Class)
classes rdf:type∗ Set(Class)
properties property Set(Property)

There have been several measures proposed for comparing classes based on the
taxonomic structure. The most common ones are based on counting the number of
edges in the taxonomy between two classes. The structural topological dissimilar-
ity on a hierarchy [Valtchev and Euzenat, 1997] follows the graph distance, i.e., the
shortest path distance in a graph taken here as the transitive reduction of the hierar-
chy.

Definition 4.37 (Structural topological dissimilarity on hierarchies). The struc-
tural topological dissimilarity δ : o × o → R is a dissimilarity over a hierarchy
H = 〈o,≤〉, such that:

∀e, e′ ∈ o, δ(e, e′) = min
c∈o

[δ(e, c) + δ(e′, c)]

4.3 Structure-based techniques 101

where δ(e, c) is the number of intermediate edges between an element e and another
element c.

This corresponds to the unit tree distance of [Barthélemy and Guénoche, 1992],
i.e., with weight 1 on each edge. This function can be normalised by the maximal
length of a path between two classes in the taxonomy:

δ(e, e′) =
δ(e, e′)

maxc,c′∈o δ(c, c′)

Example 4.38 (Structural topological dissimilarity). We provide the examples of this
section based on the taxonomy in Fig. 4.1. We consider that each term corresponds
to a class (all senses are considered together) and there exists a top of the hierarchy
(on top of Person, litterate, legal document and God).

illustrator

author
creator

Person
write

r

illustrator 0. .8 .4. .6 1.
author .8 0. .4 .6 0.
creator .4 .4 0. .2 .6
Person .6 .6 .2 0. .4
writer 1. 0. .6 .4 0.

Again, this corroborates the WordNet data that the closest classes are writer and au-
thor.

The results given by such a measure are not always semantically relevant since a
long path in a class hierarchy can often be summarised as an alternative short one.

A similar measure is the one of Leacock–Chodorow [Leacock et al., 1998] which
is function of the length of the shortest path. It has been introduced for lexicographic
taxonomies (§4.2.2). A more elaborate distance of this kind is known as the Wu–
Palmer similarity [Wu and Palmer, 1994]. This distance takes into account the fact
that two classes near the root of a hierarchy are close to each other in terms of edges
but can be very different conceptually, while two classes under one of them which
are separated by a larger number of edges should be closer conceptually.

Definition 4.39 (Wu–Palmer similarity). The Wu–Palmer similarity σ : o×o→ R

is a similarity over a hierarchy H = 〈o,≤〉, such that:

σ(c, c′) =
2× δ(c ∧ c′, ρ)

δ(c, c ∧ c′) + δ(c′, c ∧ c′) + 2× δ(c ∧ c′, ρ)

where ρ is the root of the hierarchy, δ(c, c′) is the number of intermediate edges
between a class c and another class c′ and c ∧ c′ = {c′′ ∈ o; c ≤ c′′ ∧ c′ ≤ c′′}.

Example 4.40 (Wu–Palmer similarity). The Wu–Palmer similarity also provides a
figure in coherence with WordNet structure.

102 4 Basic techniques

illustrator

author
creator

Person
write

r

illustrator 1. .5 .67 .4 .29
author .5 1. .67 .4 1.
creator .67 .67 1. .67 .4
Person .4 0.4 .67 1. .5
writer .29 1. .4 .5 1.

The upward cotopic similarity applies the Jaccard similarity to cotopies. It has
been described in [Mädche and Zacharias, 2002] and is as follows:

Definition 4.41 (Upward cotopic similarity). The upward cotopic similarity σ :
o× o→ R is a similarity over a hierarchy H = 〈o,≤〉, such that:

σ(c, c′) =
|UC(c,H) ∩ UC(c′,H)|
|UC(c,H) ∪ UC(c′,H)|

where UC(c,H) = {c′ ∈ H; c ≤ c′} is the set of superclasses of c.

Example 4.42 (Upward cotopic similarity). In this case, because all senses count in
the cotopy (and not the closest one in terms of path), the result is different from other
measures: creator benefits from its position as a superclass of author and illustrator for
scoring better than the usual writer-creator pair because they have too many unrelated
senses.

illustrator

author
creator

Person
write

r

illustrator 1. .37 .43 .4 .18
author .37 1. .43 .29 .36
creator .43 .43 1. .4 .18
Person .4 .29 .4 1. .25
writer .18 .36 .18 .25 1.

These measures cannot be applied as they are in the context of ontology matching
since the ontologies are not supposed to share the same taxonomy H , but this can
be used in conjunction with a resource of common knowledge, such as WordNet.
For that purpose, it is necessary to develop these kinds of measures over a pair of
ontologies. In [Valtchev, 1999, Euzenat and Valtchev, 2004], this amounts to using a
(local) matching between the elements to be compared (for instance, the hierarchies).

Beside these global measures that take into account the whole taxonomy for as-
sessing the similarity between classes, there are non global measures that have been
used in the ontology matching contexts. These measures usually take advantage of
the ‘direct’ part of Table 4.6. Below are some of these measures:

Super or subclass rules: These matchers are based on rules capturing the intuition
that classes are similar if their super or subclasses are similar. For example, if su-
perclasses are the same, the actual classes are similar to each other. If subclasses

4.3 Structure-based techniques 103

are the same, the compared classes are also similar [Dieng and Hug, 1998,
Ehrig and Sure, 2004]. This technique has at least two drawbacks: (i) when there
are several sub or superclasses, then, without care, they would all be mapped into
the same one, so it is necessary to have some other discriminating features, and
(ii) the similarity between the sub or super classes will rely in turn on that of
their super or subclasses. This turns this problem into yet another global similar-
ity problem.

Bounded path matching: Bounded path matchers take two paths with links be-
tween classes defined by the hierarchical relations, compare terms and their po-
sitions along these paths, and identify similar terms. This technique has been
introduced in Anchor-Prompt (§6.1.9). For example, in Fig. 2.9, if Book corre-
sponds to Volume and Popular corresponds to Autobiography, then the elements
along the paths (Science on one side and Biography and Essay on the other side)
must be carefully considered for correspondence. For instance, for deciding that
Essay is more general than Science. This technique is primarily guided by two
anchors of paths and uses alternative techniques for choosing the best match.

Mereologic structure

The second well known structure after the taxonomic structure is the mereologic
structure, i.e., the structure corresponding to a part-of relationship. The difficulty for
dealing with this kind of structure is that it is not easy to find the properties which
carry a mereologic structure. For example, a class Proceedings can have some whole-
part relations with a class InProceedings, but it will be expressed through a property
communications. These InProceedings objects will in turn have a mereologic struc-
ture which is expressed through sections property.

However, if it is possible to detect the relations that support the part-of structure,
this can be then used for computing similarity between classes: they will be more
similar if they share similar parts. This is even more useful when comparing exten-
sions of classes because it can be inferred that objects sharing the same set of parts
will be the same.

Relations

Beside two previous kinds of relations, one can consider the general problem of
matching entities based on all their relations. Classes are also related through the
definitions of their properties (like author and creator in Fig. 4.2). These properties
are also edges of a graph and if they are found similar, they can be used for finding
that classes are similar. However, contrary to taxonomic and mereologic structures,
the relation graph can contain circuits. How to handle these will be considered in
Sect. 5.3. We consider here similarities.

The similarity between nodes can also be based on their relations. For example,
in one of the possible ontology representations of schemas of Fig. 2.7, if the Book
class is related to the Human class by the author relation in one ontology, and if the

104 4 Basic techniques

Volume class is related to the Writer class by the author relation in the other ontology,
then knowing that classes Book and Volumes are similar, and that relations author
and author are similar, we can infer that Human and Writer may be similar too. The
similarity among relations in [Mädche and Staab, 2002] is computed according to
this principle.

This can be applied to a set of classes and a set of relations. It means that if we
have a set of relations r1 . . . rn in the first ontology which are similar to another set
of relations r′1 . . . r′n in the second ontology, it is possible that two classes, which are
the domains of relations in those two sets, are similar too.

This principle can also be extended to the composition of relations, i.e., instead of
considering only the relations asserted at a class, one can consider their composition
with relations starting at the domain of this relation. For instance, instead of consid-
ering the author relation, one will consider the author·firstname, the author·lastname,
or the author·nationality relations.

One of the problems of this approach is that it is based on the use of similar-
ity of relations to infer the similarity of their domain classes or their range classes.
This introduces circularity in the computation of similarity. There are several ways
to overcome this circularity. As a first alternative, the similarity on relations can
be based on their labels using techniques developed in Sect. 4.2.1. As a second al-
ternative, if relations are organised in a taxonomy, then methods considered in the
previous subsection can be used as well.

Finally, two extreme solutions, that use the relations for reaching nodes but not
for actually matching, are considered by the following approaches:

Children. The similarity between nodes of the graph is computed based on similar-
ity of their children nodes, that is, two non leaf entities are structurally similar if
their immediate children sets are highly similar. A more complex version of this
matcher is implemented in [Do and Rahm, 2002].

Leaves. The similarity between nodes of the graphs is computed based on similar-
ity of leaf nodes, that is, two non leaf schema elements are structurally simi-
lar if their leaf sets are highly similar, even if their immediate children are not
[Madhavan et al., 2001, Do and Rahm, 2002]. This is very well adapted to com-
paring document schemas.

Summary on relational structure

Matching ontologies from their relational (or external) structure is very powerful be-
cause it allows all the relations between entities to be taken into account. This must
be grounded on other tangible properties, which is why it is often used in combina-
tion with internal structural methods and terminological methods.

It is worth considering what are the important relations before using such tech-
niques. The most commonly used structure is the taxonomy because it is the back-
bone of ontologies and has usually received a lot of attention from designers. In some
fields, the mereology relations are as important as taxonomic ones. However, they are
difficult to identify because contrary to the subClass relation, they can bear any other
name.

4.4 Extensional techniques 105

The relational structure raises the problem of which part influences what: there
is usually a mutual influence between each of the related parts. This is the reason
why, beside the similarity equations used for comparing the entities, it is necessary
to have an iterative algorithm. This is considered in Sect. 5.3.

4.4 Extensional techniques

When individual representations (or instances) are available, there is a very good
opportunity for matching systems. When two ontologies share the same set of in-
dividuals, matching is highly facilitated. For example, if two classes share exactly
the same set of individuals, then there can be a strong presumption that these classes
represent a correct match.

Even when classes do not share the same set of individuals, these allow the
grounding of the matching process on tangible indices which do not change easily.
For instance, titles of Books do not have any reason to change. So if titles of Books
are different, then these are most certainly not the same books. Then, matching can
be again based on individual comparisons.

We thus divide extensional methods into three categories: those which apply to
ontologies with common instance sets, those which propose individual identification
techniques, before using the previous ones, and those which do not require identifi-
cation, i.e., which work on heterogeneous sets of instances.

4.4.1 Common extension comparison

The easiest way to compare classes when they share instances is to test the intersec-
tion of their instance set A and B and to consider that these classes are very similar
when A∩B = A = B, more general when A∩B = B or A∩B = A. The work in
[Larson et al., 1989, Sheth et al., 1988] discussed how relationships and entity sets
can be integrated primarily based on the set relations: equal (A ∩ B = A = B),
contains (A ∩ B = A), contained-in (A ∩ B = B), disjoint (A ∩ B = ∅) and over-
lap. The problem is the ability to handle faults: small amounts of incorrect data may
lead the system to draw a wrong conclusion on domain relationships. Moreover, the
dissimilarity has to be 1 when none of these cases apply: for instance, if the classes
have some instances in common but not all.

A way to refine this is to use the Hamming distance between two extensions: it
corresponds to the size of the symmetric difference normalised by the size of the
union.

Definition 4.43 (Hamming distance). The Hamming distance between two sets is
a disimilarity function δ : 2E × 2E → R such that ∀x, y ⊆ E:

δ(x, y) =
|x ∪ y − x ∩ y|

|x ∪ y|

106 4 Basic techniques

This version of the symmetric difference is normalised. Using such a distance in
comparing sets is more robust than using equality: it tolerates some individuals being
misclassified and can still produce a short distance.

It is also possible to compute a similarity based on the probabilistic interpretation
of the set of instances. This is the case of the Jaccard similarity [Jaccard, 1901].

Definition 4.44 (Jaccard similarity). Given two sets A and B, let P (X) be the
probability of a random instance to be in the set X . The Jaccard similarity is defined
as follows:

σ(A,B) =
P (A ∩B)
P (A ∪B)

This measure is normalised and reaches 0 when A ∩ B = ∅ and 1 when A = B. It
can be used with two classes of different ontologies sharing the same set of instances.

Formal concept analysis

One of the tools of formal concept analysis (FCA) [Ganter and Wille, 1999] is the
computation of the concept lattice. The idea behind formal concept analysis is the
duality between a set of objects (here the individuals) and their properties: the more
properties are constrained, the fewer objects satisfy the constraints. So a set of ob-
jects with properties can be organised in a lattice of concepts covering these objects.
Each concept can be identified by its properties (the intent) and covers the individual
satisfying these properties (the extent).

In ontology matching, the properties can simply be the classes to which the in-
dividuals are known to belong and the technique is independent from the origin of
the entities, i.e., whether they come from the same ontology or not. From this data
set, formal concept analysis computes the concept lattice (or Galois lattice). This is
performed by computing the closure of the instances×properties Galois connection.
This operation starts with the complete lattice of the power set of extent (respec-
tively, intent) and keeps only the nodes which are closed under the connection, i.e.,
starting with a set of properties, it determines the corresponding set of individuals,
which itself provides a corresponding set of properties; if this set is the initial one,
then it is closed and is preserved, otherwise, the node is discarded. The result is a
concept lattice, like the one computed in Fig. 4.4 from the table.

For instance, let us start with the table of Fig. 4.4. The table displays a small set of
instances and the classes they belong to (from both ontologies). The right-hand side
of Fig. 4.4 displays the corresponding concept lattice. From this lattice the following
correspondences can be extracted:

Science = Essay Science ≥ Biography Essay ≥ Popular

Science ≥ Autobiography Popular = Biography Popular = Autobiography

Literature ≥ Pocket Novel = Pocket

The result is not accurate. However, it is possible to weight these results by first
eliminating the redundant correspondences and by providing a confidence according
to the size of the extent covered by the correspondence.

4.4 Extensional techniques 107

B
oo

k
S

ci
en

ce
Po

pu
la

r
Po

ck
et

E
ss

ay
B

io
gr

ap
hy

A
ut

ob
io

gr
ap

hy
Li

te
ra

tu
re

N
ov

el
Po

et
ry

My life
√ √ √ √ √ √

Logic
√ √ √

La chute
√ √ √ √

Mes propriétés
√ √ √

Book

Science
Essay
Logic

Popular
Biography

Autobiography
My Life

Literature

Novel
Pocket
La chute

Poetry
Mes

propriétés

Fig. 4.4. A ‘formal context’ and the corresponding concept lattice.

4.4.2 Instance identification techniques

If a common set of instances does not exist, it is possible to try to identify which
instance from one set corresponds to which other instance from the other set. This
method is usable when one knows that the instances are the same. This works, for
example, when integrating, two human resource databases of the same company, but
does not apply for those of different companies or for databases of events which have
no relations.

A first natural technique for identifying instances is to take advantage of keys in
databases. Keys can be either internal to the database, i.e., generated unique surro-
gates, in which case they are not very useful for identification, or external identifica-
tion, in which case there is high probability that these identification keys are present
in both data sets (even if they are not present as keys). In such a case, if they are used
as keys, we can be sure that they uniquely identify an individual (like isbn).

When keys are not available, or they are different, other approaches to determine
property correspondences use instance data to compare property values. In databases,
this technique has been known as record linkage [Fellegi and Sunter, 1969,
Elfeky et al., 2002] or object identification [Lim et al., 1993]. They aim at identify-
ing multiple representations of the same object within a set of objects. They are usu-
ally based on string-based and internal structure-based techniques (§4.2 and §4.3.1).

If values are not precisely the same but their distributions can be compared, it is
possible to apply global techniques. This case is covered in the next section.

4.4.3 Disjoint extension comparison

When it is not possible to directly infer a dataset common to both ontologies, it is
easier to use approximate techniques for comparing class extensions. These methods
can be based on statistical measures about the features of class members, on the
similarities computed between instances of classes or based on a matching between
entity sets.

108 4 Basic techniques

Statistical approach

The instance data can be used to compute some statistics about the property values
found in instances, such as maximum, minimum, mean, variance, existence of null
values, existence of decimals, scale, precision, grouping, and number of segments.
This allows the characterising of the domains of class properties (§4.3.1) from the
data. In practice, if dealing with statistically representative samples, these measures
should be the same for two equivalent classes of different ontologies.

Example 4.45 (Statistical matching). Consider two ontologies with instances. The
analysis of numerical properties size and weight in one ontology and hauteur and
poids in the other reveals that they have different average values but the same coef-
ficient of variation, i.e., standard deviation divided by mean, which, in turn, reveals
comparable variability of size and hauteur on the one hand and weight and poids on
the other hand. This is typically what happens when values are expressed in different
units. The ratio of average values of size/hauteur is 2.54 and that of weight/poids is
28.35.

These values have been established based on the whole population. They can be
used for comparing the statistical characteristics of these properties in the classes of
the ontologies. For instance, the average value of the size property for the Pocket
class significantly differs from that of the global population and, once divided by
28.35, is very close to that of the Livredepoche class (also differing from the whole
population in the same manner). Hence, these two classes could be considered as
similar.

Other approaches, like [Li and Clifton, 1994], propose methods that utilise data
patterns and distributions instead of data values and domains. The result is a bet-
ter fault tolerance and a lower time-consumption since only a small portion of data
values are needed due to the employment of data sampling techniques. In general, ap-
plying internal structure methods to instances allows a more precise characterisation
of the actual contents of schema elements, thus, more accurately determining corre-
sponding datatypes based, for example, on the discovered value ranges and character
patterns.

These methods have, however, one prerequisite: they work better if the corre-
spondences between properties are known (otherwise they could match different
properties on the basis of their domain). This is already a matching problem to be
solved.

Similarity-based extension comparison

Similarity-based techniques do not require the classes to share the same set of in-
stances, though they can still be applied in that case. In particular, the methods based
on common extensions always return 0 when the two classes do not share any in-
stances, disregarding the distance between the elements of the sets. In some cases, it
is preferable to compare the sets of instances. This requires a (dis)similarity measure
between the instances that can be obtained with the other basic methods.

4.4 Extensional techniques 109

In data analysis, the linkage aggregation methods allow the assessment of the
distance between two sets whose objects are only similar. They thus allow us to
compare two classes on the basis of their instances.

Definition 4.46 (Single linkage). Given a dissimilarity function δ : E×E → R, the
single linkage measure between two sets is a disimilarity function ∆ : 2E ×2E → R

such that ∀x, y ⊆ E, ∆(x, y) = min(e,e′)∈x×y δ(e, e′).

Definition 4.47 (Full linkage). Given a dissimilarity function δ : E × E → R, the
complete linkage measure between two sets is a disimilarity function ∆ : 2E×2E →
R such that ∀x, y ⊆ E, ∆(x, y) = max(e,e′)∈x×y δ(e, e′).

Definition 4.48 (Average linkage). Given a dissimilarity function δ : E × E → R,
the average linkage measure between two sets is a disimilarity function ∆ : 2E ×
2E → R such that ∀x, y ⊆ E, ∆(x, y) =

P
(e,e′)∈x×y δ(e,e′)

|x|×|y| .

Other linkage measures have been defined. Each of these methods has its own
benefits, e.g., maximising shortest distance, minimising longest distance, minimis-
ing average distance. Another method from the same family is the Hausdorff dis-
tance measuring the maximal distance of a set to the nearest point in the other set
[Hausdorff, 1914]:

Definition 4.49 (Hausdorff distance). Given a dissimilarity function δ : E ×E →
R, the Hausdorff distance between two sets is a disimilarity function ∆ : 2E×2E →
R such that ∀x, y ⊆ E,

∆(x, y) = max(max
e∈x

min
e′∈y

δ(e, e′),max
e′∈y

min
e∈x

δ(e, e′))

Matching-based comparison

The problem with the former distances, but average, is that their value is a function
of the distance between one pair of members of the sets. The average linkage, on the
other hand, has its value function of the distance between all the possible compar-
isons.

Matching-based comparisons [Valtchev, 1999] consider that the elements to be
compared are those which correspond to each other, i.e., the most similar one.

To that extent, the distance between two sets is considered as a value to be min-
imised and its computation is an optimisation problem: that of finding the elements
of both sets which correspond to each others. In particular, it corresponds to solving
a bipartite graph matching problem (§5.7.3).

Definition 4.50 (Match-based similarity). Given a similarity function σ : E ×
E → R, the match-based similarity between two subsets of E is a similarity function
MSim : 2E × 2E → R such that ∀x, y ⊆ E,

MSim(x, y) =
maxp∈Pairings(x,y)

(∑
〈n,n′〉∈p σ(n, n′)

)
max(|x|, |y|) ,

with Pairings(x, y) being the set of mapping of elements of x to elements of y.

110 4 Basic techniques

This match-based similarity already requires an alignment of entities to be com-
puted. It also depends on the kind of alignment that is required. Indeed, the result
will be different depending on whether the alignment is required to be injective
or not. The match-based comparison can also be used when comparing sequences
[Valtchev, 1999].

Summary on extensional techniques

Knowing extension information is invaluable for ontology matching because this
provides information that is independent from the conceptual part of the ontology.
Indeed, ontologies are views of the world and this is the reason why there can be
numerous different ontologies on the same topic (and the reason why they have to be
matched). Extension information is supposed to be less prone to variability and can
be used to accurately match classes.

This extension information is even more useful when a set of individuals char-
acterised in both ontologies is available. This provides an easy way to compare the
overlap between two classes.

There are situations, however, in which data instance information is not available.
This can be caused by the unavailability of data (connection data to a web service is
not available) or for confidentiality reasons. In such a situation, the other techniques
are the only possible ones.

4.5 Semantic-based techniques

The key characteristics of semantic methods is that model-theoretic semantics is used
to justify their results. Hence they are deductive methods. Of course, pure deductive
methods do not perform very well alone for an essentially inductive task like on-
tology matching. They hence need a preprocessing phase which provides ‘anchors’,
i.e., entities which are declared, for example, to be equivalent (based on the identity
of their names or user input for instance). The semantic methods act as amplifiers of
these seeding alignments.

We thus include in semantic techniques particular methods for anchoring the on-
tologies (§4.5.1). They are based on the use of existing formal resources for initiating
an alignment that can be further considered by deductive methods (§4.5.2).

4.5.1 Techniques based on external ontologies

When two ontologies have to be matched, they often lack a common ground on which
comparisons can be based. In this section we focus on using intermediate formal
ontologies for that purpose. These intermediate ontologies can define the common
context or background knowledge [Giunchiglia et al., 2006c] for the two ontologies
to be matched. The intuition is that a background ontology with a comprehensive
coverage of the domain of interest of the ontologies to be matched helps in the dis-
ambiguation of multiple possible meanings of terms.

4.5 Semantic-based techniques 111

This common ground can often be found by relating the ontologies to external
resources. These resources can differ on three specific dimensions:

Breadth: whether they are general purpose resources or domain specific resources.
By using specialised resources, e.g., the Formal Model of Anatomy in medicine,
one can be sure that the concepts in the contextualised resources can be matched
accurately to their corresponding concepts in the ontology. However, by using
more general resources there is more probability that an alignment already exists
and can be exploited right away.

Formality: whether they are pure ontologies with semantic descriptions or infor-
mal resources such as WordNet. By using formal resources, e.g., DOLCE or the
Formal Model of Anatomy, it is possible to reason within or across these formal
models in order to deduce the relation between two terms. By using informal re-
sources, e.g., WordNet, it is possible to extend the set of senses that are covered
by a term and to increase the number of terms which can express these concepts.
There is thus more opportunity to match terms.

Status: whether these resources are considered as references such as ontologies,
thesauri or they are sets of instances or annotated documents that are shared.

Since non pure ontological resources such as WordNet have been considered in
Sect. 4.2.2 and extensional resources have been dealt with in Sect. 4.4.1, we concen-
trate here on using external formal ontologies.

Contextualising ontologies can typically be achieved by matching these ontolo-
gies with a common upper-level ontology that is used as external source of common
knowledge, e.g., Cyc [Lenat and Guha, 1990], Suggested Upper Merged Ontology
(SUMO) [Niles and Pease, 2001] or Descriptive Ontology for Linguistic and Cogni-
tive Engineering (DOLCE) [Gangemi et al., 2003].

Example 4.51 (Using upper-level ontologies as background knowledge). An exper-
iment has been carried out by expressing fishery resources (such as databases and
thesauri) within the DOLCE upper level ontology [Gangemi, 2004]. The goal was to
merge these resources into a common Core Ontology of Fisheries. It has involved
transforming manually the resources into lightweight ontologies expressed with re-
spect to DOLCE and then using reasoning facilities for detecting relations and in-
consistencies between entities of this ontology.

An approach proposed in [Aleksovski et al., 2006] works in two steps:

Anchoring (also known as contextualising) is matching ontologies o′ and o′′ to the
background ontology o. This can be done by using any available methods pre-
sented in this book, usually non sophisticated ones.

Deriving relations is the (indirect) matching of ontologies o′ and o′′ by using the
correspondences discovered during the anchoring step. Since concepts of ontolo-
gies o′ and o′′ become a part of the background ontology o via anchors, checking
if these concepts are related, can be therefore performed by using a reasoning
service (§4.5.2) in the background ontology. Intuitively, combining the anchor
relations with the relations between the concepts of the reference ontology is
used to derive the relations between concepts of o′ and o′′.

112 4 Basic techniques

Example 4.52 (Using domain specific formal ontologies as background knowledge).
Suppose we want to match the anatomy part of the CRISP10 directory to the anatomy
part of the MeSH11 meta-thesaurus. In this case the FMA ontology12 can be used as
background knowledge which gives the context to the matching task. The result of
anchoring is a set of matches with three different kinds of relations:≡,�,� between
concepts from FMA, and CRISP or MeSH.

For example, the concept of brain from CRISP, denoted by BrainCRISP , could
be easily anchored to the concept brain of FMA, denoted by BrainFMA. Similarly,
the concept of head from MeSH, denoted by HeadMeSH , could be anchored to a
background knowledge concept HeadFMA. In the reference ontology FMA there is
a part of relation between BrainFMA and HeadFMA. Therefore, we can derive that
BrainCRISP is a part of HeadMeSH .

Since the domain specific ontology provides the context for the matching task,
the concept of Head was correctly interpreted as meaning the upper part of the human
body, instead of, for example, meaning a chief person. This is not so straightforward
as can be shown by replacing FMA with WordNet: in WordNet the concept of Head
has 33 senses (as a noun). Finally, once the context of the matching task has been es-
tablished, as our example shows, various heuristics, such as string-based techniques,
can improve the anchoring step.

There are some other techniques which attempt at using not one context ontol-
ogy but as many as possible. These ontologies are typically taken from the web,
selected for relevance, i.e., that they contain enough matches with the initial ontolo-
gies, and the result is a consensus between the results provided with these ontologies
[Sabou et al., 2006a].

Once these initial alignments have been obtained, they can be exploited further
by deductive techniques.

4.5.2 Deductive techniques

The basis of the semantic techniques are the merging of two ontologies and the search
for correspondences A such that o, o′ |= A. Of course, this can apply only if A
can be considered as a formula of the language. For instance, this can apply if it
is a subsumption relation between two entities e and e′: e � e′. These semantic
techniques can also be used for testing the satisfiability of alignments (§2.5.4), in
particular, for discarding alignments which lead to an inconsistent merge of both
ontologies.

Examples of semantic techniques are propositional satisfiability, modal satisfia-
bility techniques, or description logic based techniques.

10 http://crisp.cit.nih.gov/
11 http://www.nlm.nih.gov/mesh/
12 http://sig.biostr.washington.edu/projects/fm/

4.5 Semantic-based techniques 113

Propositional techniques

An approach for applying propositional satisfiability (SAT) techniques to on-
tology matching includes the following steps [Giunchiglia and Shvaiko, 2003a,
Bouquet and Serafini, 2003, Giunchiglia et al., 2004, Shvaiko, 2006]:

1. Build a theory or domain knowledge (Axioms) for the given input two ontolo-
gies as a conjunction of the available axioms. The theory is constructed by using
matchers discussed in the previous sections, e.g., those based on WordNet, or
those using external ontologies (§4.5.1).

2. Build a matching formula for each pair of classes c and c′ from two ontologies.
The criterion for determining whether a relation holds between two classes is the
fact that it is entailed by the premises (theory). Therefore, a matching query is
created as a formula of the following form:

Axioms→ r(c, c′)

for each pair of classes c and c′ for which we want to test the relation r (within
=, �, �, ⊥). c and c′ are also sometimes called contexts.

3. Check for validity of the formula, namely that it is true for all the truth assign-
ments of all the propositional variables occurring in it. A propositional formula
is valid if and only if its negation is unsatisfiable, which is checked by using a
SAT solver.

SAT solvers are correct and complete decision procedures for propositional sat-
isfiability, and therefore, they can be used for an exhaustive check of all the possible
correspondences. In some sense, these techniques compute the deductive closure of
some initial alignment [Euzenat, 2007].

Example 4.53 (Propositional logic relation inference).
Step 1. Suppose that classes images and Europe belong to one ontology, while

another ontology has classes pictures and Europe (as well). A matcher which uses
WordNet can determine that images = pictures. Also many other matchers can find
that classes of Europe in both ontologies are identical, i.e., Europe = Europe. Then
translating the relations between classes under consideration into propositional con-
nectives in the obvious way results in the following Axioms:

(images ↔ pictures) ∧ (Europe ↔ Europe)

Step 2. Suppose c is defined as Europe � images which intuitively stands for the
concept of European images, while c′ is defined as pictures � Europe which intu-
itively stands for the concept of pictures of Europe. Let us also suppose that we want
to know if c is equivalent (↔) to c′. Thus, this matching task requires constructing
the following formula:

((images ↔ pictures) ∧ (Europe ↔ Europe)) →
((Europe ∧ images) ↔ (Europe ∧ pictures))

114 4 Basic techniques

Step 3. Negation of this formula turns out to be unsatisfiable, and therefore, the
equivalence relation holds. See also Chap. 9 for a detailed discussion of this example.

Notice that this technique, beside pruning the incorrect correspondences, also
discovers the new ones between complex concepts. In the example above c is defined
by combining (taking intersection of) such atomic concepts as Europe and images.
And, similarly for c′. These are simple examples of complex concepts being bounded
by the expressive power of a propositional language. The relation between such com-
plex concepts as (Europe ∧ images) and (Europe ∧ pictures) was not available after
the first step, and has being discovered as a result of deduction.

This technique can only be used for matching tree-like structures, such as clas-
sifications, taxonomies, without taking properties or roles into account. Modal SAT
can be used, as proposed in [Shvaiko, 2004], for extending the methods related to
propositional SAT to binary predicates.

Description logic techniques

In description logics, the relations, e.g., =, �, �, ⊥, can be expressed with respect
to subsumption. The subsumption test, can be used to establish the relations between
classes in a purely semantic manner. In fact, first merging two ontologies (after re-
naming) and then testing each pair of concepts and roles for subsumption is enough
for matching terms with the same interpretation (or with a subset of the interpreta-
tions of the others) [Bouquet et al., 2006].

Example 4.54 (Description logic relation inference). Consider two minimal descrip-
tion logic ontologies:

Micro-company = Company � ≤5 employee

meaning that a Micro-company is a Company with at most 5 employees and

SME = Firm � ≤10 associate

meaning that a SME is a Firm with at most 10 associates. The following initial align-
ment (expressed in description logic syntax) includes:

Company = Firm

associate � employee

It expresses that Company is equivalent to Firm and associate is a subclass of em-
ployee. This obviously entails:

Micro-company � SME

i.e., Micro-company is a subclass of SME.

4.6 Summary 115

There are other uses of description logic techniques which are relevant to
ontology matching. For example, in a spatio-temporal database integration sce-
nario, as first motivated in [Parent and Spaccapietra, 2000] and later developed in
[Sotnykova et al., 2005], the inter-schema correspondences are initially proposed by
the integrated schema designer and are encoded together with input schemas in the
ALCRP(S2⊕T) language. Then, description logic reasoning services are used to
check the satisfiability of the two source schemas and the set of inter-schema cor-
respondences. If some objects are found unsatisfiable, the inter-schema correspon-
dences should be reconsidered. A similar approach in the context of alignment de-
bugging has also been investigated in [Meilicke et al., 2006].

Summary on semantic techniques

As it was mentioned in the beginning, semantics techniques cannot find the corre-
spondences alone. However, they are invaluable when correspondences are gener-
ated in order to ensure the completeness, i.e., find all the correspondences that must
hold, and the consistency, i.e., find correspondences that lead to inconsistency, of the
alignment.

Only a few of these techniques have been developed so far (usually, databases
had only simple semantic theories so these techniques were not developed in this
field). However, with the improvement of deductive tools for dealing with seman-
tic web languages, we believe that we will see more systems using semantic-based
techniques.

An important challenge of these techniques is their integration with inductive
techniques. Indeed, completing alignments and finding inconsistencies is a crucial
step. However, once deductive techniques have been applied, their results might be
considered as an input to inductive techniques. For example, for finding more corre-
spondences from the completion or for selecting alternative correspondences instead
of inconsistent ones. This theme deserves to be further investigated.

4.6 Summary

We have discussed basic techniques that can be used for building correspondences
based on terminological (§4.2), conceptual (§4.3), extensional (§4.4) and semantic
(§4.5) arguments. This classification of techniques is a natural one since each of
these deals with a partial view of ontologies.

There are many such techniques and our goal was not to present them all. It was
rather to propose a panorama of the most used ones so far and to show the direction
they take. There is still much work going on in finding better methods in each of
these directions.

We have also observed that all these techniques cannot be used in isolation, but
that each of them can take advantage of the results provided by the others. Another
part of the art of ontology matching relies on selecting and combining these methods

116 4 Basic techniques

in the most adequate way. Combinations of basic matchers is the topic of the next
chapter.

